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1 Introduction

In the field of single cell transcriptomics cells are explored analyzing the density distribution heterogeneity of

ensembles of single-cell transcriptional profiles. In this context it is extremely important to identify high quality

communities that would led to the discovery of new cell types or cell stages. A general approach to deal with this

pattern recognition problem in such a high dimensional space is to focus on a low-dimensional manifold approximation

captured by a mutual K-nearest neighbors (MKNN) graph. There are many unsupervised community detection

algorithms in graphs that seek to group data-sets according to different figure of merit. However, the community

recognition task is an ill-posed problem and different algorithms typically produce different partitions of the data.

In this work we address this issue and introduced scBioMerging: a method that integrate external information to

identify robust and biologically relevant communities in single-cell transcriptional landscapes.

2 Methods

We aimed to get a biologically meaningful similarity measure between assayed cells. We started from a gene expression

matrix obtained in a single-cell RNAseq experiment and constructed a mutual k-mutual nearest neighbor graph

(graphX) based on the correlations between cells in the Principal Component space. Then, we calculated the

standardized transcriptional profile of each cell (Zi) in graphX. At the same time, we identified over-represented Gene-

Ontology Biological Processes (i.e. external information) and, for each cell, computed a biological enrichment

profile that we used to embed the assayed cells in a kind of biological space. An MKNN graph was then constructed

based on the correlation between cell enrichment profiles (graphBP). Finally, we computed a biological process

similarity matrix using a topological measure of similarity from graphBP and used it to weighed the graphX edges.

In this way a scalar field that captured the biological-similarity between linked pairs of nodes was incorporated into

graphX.

The idea was then to used an heuristic similar to the one implemented in the Louvain algorithm. We started

with a high resolution partition of nodes (obtained by applying a k-mean community detection algorithm in PCA

space) and we considered the corresponding community graph (each node representing a cluster from graphX

nodes). Accumulated biological similarity was considered to weigh self-loops and inter-community links in order to

look for partitions that maximize the modularity by merging clusters that were biologically similar and produce a

new enhanced partition (Pi). This process was repeated about 10 times for different k-means initializations. Finally,

a partition (Pf ) was generated by applying hierarchical clustering on the adjacency matrix calculated with a voting

method that weighs the matrices of the different partitions Pi (WEAC)(Dong Huang, 2015).
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Figure 1: Scheme of scBioMerging’s pipeline. We start from top left corner with the gene expression matrix,

then we use the highly variable genes (HVGs) to compute de Principal Component Analysis Matrix. Using

pearson correlation on the cells embedded in PCA space we built a mutual k-mutual nearest neighbor (MKNN)

graph (graphX) on this expression space. We used this graph to calculate the standardized transcriptional

profile of each cell in Zs matrix. We also used the HVGs to identify over-represented Gene-Ontology Biological

Processes and then we computed a biological enrichment profile to embed the assayed cells in a kind of biological

space. We used the same approach as in the expression space to construct a MKNN graph (graphBP) and then

calculated a similarity matrix of biological processes for the cells. This matrix served as external information to

be inyected in edges of graphX and capture the biological-similarity between linked pairs of nodes. Accumulated

biological similarity was considered to weigh self-loops and inter-community links in order to look for partitions

that maximize the modularity by merging clusters that were biologically similar and produce a new enhanced

partition. This process was repeated about 10 times for different k-means initializations. Finally, a final partition

was generated by applying hierarchical clustering on the adjacency matrix calculated with a voting method that

weighs the matrices of the different partitions.
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3 Results

Using scBioMerging on single-cell and single-nuclei RNAseq developmental datasets, we found clusters that were

remarkably similar to those annotated by the authors of published papers (a.k.a “ground truth”). These clusters

served as a solid starting point for: the identification of meaningful marker genes or the analysis of differential

expression patterns between putative cell types or developmental stages.

The clusters provided by our method served as a solid starting point for: the identification of meaningful marker

genes or the analysis of differential expression patterns between putative cell types or developmental stages.

4 Conclusions

We propose a novel and robust method that uses external information to generate a well defined partition on a

continuous process. In particular, it can be used to identify biologically relevant cellular stages in a developmental

dataset produced by single-cell/single-nuclei RNAseq techniques. We hope that it will help researchers in the

analysis of this type of datasets and that they can find important cell stages that have a fundamental role in

their developmental study.
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